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ABSTRACT

Unusual-Object Detection in Color Video

for Wilderness Search and Rescue

Daniel R. Thornton

Department of Computer Science

Master of Science

Aircraft-mounted cameras have potential to greatly increase the effectiveness of
wilderness search and rescue efforts by collecting photographs or video of the search area.
The more data that is collected, the more difficult it becomes to process it by visual in-
spection alone. This work presents a method for automatically detecting unusual objects in
aerial video to assist people in locating signs of missing persons in wilderness areas.

The detector presented here makes use of anomaly detection methods originally de-
signed for hyperspectral imagery. Multiple anomaly detection methods are considered, im-
plemented, and evaluated. These anomalies are then aggregated into spatiotemporal objects
by using the video’s inherent spatial and temporal redundancy. The results are therefore
summarized into a list of unusual objects to enhance the search technician’s video review
interface.

In the user study reported here, unusual objects found by the detector were overlaid
on the video during review. This increased participants’ ability to find relevant objects in a
simulated search without significantly affecting the rate of false detection. Other effects and
possible ways to improve the user interface are also discussed.

Keywords: Wilderness search and rescue, anomaly detection, aerial imagery, user study
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Chapter 1

Introduction

Wilderness search and rescue (WiSAR) is the task of finding missing persons in

wilderness areas. Many people go missing in wilderness areas every year. Utah’s Grand

County Search and Rescue performed 29 searches in 2008 alone [20]. This task is highly

time-sensitive, not only because of increasing danger to the search subject (missing person),

but also because the search radius increases over time. The purpose of this work is to aid

searchers in finding traces of the search subject.

1.1 An Unmanned Aerial System for Wilderness Search and Rescue

A fast and efficient way to cover a large search area is with an aircraft-mounted camera.

With enough resolution (pixels per square meter), searchers can identify traces of the search

subject from the air quickly and effectively. The system presented in this work was specifically

designed for a search platform being developed by the BYU WiSAR research group [9]

(Figures 1.1 and 1.2).

Small aircraft such as mini Unmanned Aerial Vehicles (UAVs) (Figure 1.1) are useful

for their size and portability but are limited to small, lightweight equipment. In addition to

portability issues, the need for immediate feedback from the aircraft necessitates the use of

video transmitters.

The planes are outfitted with small NTSC video cameras [9]. The video is transmitted

live to a ground station along with the plane’s telemetry for control of the UAV as well as

locating targets on the ground. The video and telemetry are also logged for off-line review.

1
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Figure 1.1: UAV equipped for aerial search

Figure 1.2: UAV control station

2
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By processing the video collected of the search area, searchers identify possible signs of the

search subject.

1.2 Challenges of Aerial Search

Even with the aid of aerial video cameras, it can be difficult to identify signs of a search

subject. Figure 1.3 shows examples of simulated search images. Image resolution is limited

both by the camera itself and by the need to cover as much ground as possible. In addition,

the video can move quickly, disorienting searchers and giving them little time to detect

targets before they move out of view. Consequently, searchers may miss signs of the search

subject, even when captured by the camera.

In practice, the image processing task consists of two steps: target detection and

target analysis. In addition to the missing person, targets include abandoned clothing or

other personal items. Targets vary in difficulty. For example, a blanket (Figure 1.3a) may be

easier to detect than a shirt (Figure 1.3b). Depending on available manpower, BYU WiSAR

currently depends on one or more human technicians to perform both detection and analysis

of possible targets.

Target detection is the task of quickly identifying possible signs of the search subject.

When performed by a human technician, detection is characterized by a reflexive action,

such as a keystroke, accompanying the appearance of an unusual or significant object. The

analyst then tries to determine, through inspection of the imagery, whether the target is

likely to be a positive sign. For example, in the interface described in [13], one mouse click

was required at initial detection to freeze the display. After a brief analysis of the target, the

user would localize it in the image with a second click. The simplicity of detection and its

relative lack of dependence on domain knowledge make it a good candidate for automation.

Because of the sensitive nature of search and rescue, the search team will most likely

want to have all imagery reviewed by a human, even with the aid of an automated detector.

Because time and resources are precious, any unusual objects found by the detector will need

3
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(a)

(b)

Figure 1.3: Examples of video frames from a simulated search. Targets are marked with
yellow arrows: (a) blue blanket and (b) white shirt.

4
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to be confirmed by inspection of the imagery before further action is taken. In addition,

it must be assumed that the detector will miss some objects of interest. It is therefore

possible that an object could be missed by the automated detector but detected by a human,

especially a trained and experienced searcher. Therefore, the goal of this work is to use

automated detection as an aid for visual search rather than a replacement for it.

1.3 Solution Overview

This work primarily relies on leveraging color information in video of the search area to detect

signs of a missing person. This technique is referred to as spectral anomaly detection. For

the best chances of success in applying spectral anomaly detection to this domain, multiple

detection methods were implemented and compared.

Using the temporal and spatial information in the video stream, unusually colored

pixels are aggregated into larger objects. The resulting list of unusual objects can be pre-

sented to a technician in many ways. This work includes a user study in which unusual

objects are marked in the video to catch the searcher’s attention.

Analyzing the results of spectral anomaly detection methods show that it works well in

this domain. The results of the user study show that automated detection helps technicians

to find objects of interest without increasing false detection.

The layout of this thesis is as follows: Chapter 2 discusses work related to automated

detection, with a focus on spectral anomaly detection. Chapter 3 documents the imple-

mentation and evaluation of a system for identifying unusual objects in video of natural

scenes. In addition to a rigorous comparison of multiple spectral anomaly detection meth-

ods, a method of aggregating spectral anomalies into a concise list of objects is presented.

Chapter 4 discusses a user study performed to show the effects of the detector as an aid for

the search task. Finally, Chapter 5 discusses the conclusions that can be drawn from the

results of this work.

5



www.manaraa.com

Chapter 2

Background

Tools related to this work can be found in multiple fields of research. BYU WiSAR

has developed useful tools for visual enhancement of aerial search video. In the field of

hyperspectral imagery, various methods have been proposed for anomaly detection, which

may be applicable to traditional color images as well. Another closely-related field is video

surveillance, including human detection methods. This chapter explores each of these fields

and how these methods may be applied for detecting objects of interest in aerial search.

2.1 Video Enhancement

One enhancement method is temporally local mosaics. As the video is played back, transfor-

mations are calculated between video frames, and each image is then repositioned to better

align with its immediate neighbors. In addition to extending the length of time that an

object is visible, the mosaic provides more context and some amount of stabilization. Such

displays have been shown to improve detection rates when searching for specific objects in

the video [13].

Other enhancement methods developed for BYU WiSAR visually enhance objects of

interest. The objects of interest can be visually enhanced using the hue and saturation of

their color values [18] or by the amount of heat they produce [17]. No study was performed

on the effectiveness of color enhancement, and neither of these enhancement methods has

been studied in conjunction with temporally local mosaics.

6



www.manaraa.com

2.2 Spectral Anomaly Detection

Most of the work for spectral anomaly detection has been for use on hyperspectral images.

A conventional image consists of a grid of pixels, where each pixel is a triple of brightness

values for the three primary colors of light: red, green and blue. Thus, each pixel is a three-

vector in the RGB color space. A hyperspectral image is of a similar form, except that each

pixel contains a much greater number of samples from a wide range of spectral bands.

2.2.1 Modeling the Spectral Distribution

A common approach [19, 3, 21] to hyperspectral anomaly detection is to model the statistical

distribution of spectral signatures with one or more multivariate normal distributions. This

model is then used to identify pixels whose spectral signatures are statistical outliers. The

normal distribution is most likely used for its simplicity. Once the mean vector and covariance

matrix have been calculated, outliers can be identified using a threshold on the Mahalanobis

distance

dM(~x) =
√

(~x− ~µ)T Σ−1(~x− ~µ) (2.1)

where ~µ is the mean vector and Σ is the covariance matrix. In a multivariate normal distri-

bution, the Mahalanobis distances are distributed according to the chi-square distribution

with cumulative distribution function

F (dM ; k) = P (k/2, dM/2) (2.2)

where k is the dimensionality of the multivariate normal and P is the regularized Gamma

function. The distance threshold can therefore be chosen to encompass a desired probability.

In the case of one-dimensional data, this method yields the well-known bell-curve confidence

intervals. When data points are RGB triples, k = 3.

7
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2.2.2 Normalization Methods

Unfortunately, a multivariate normal distribution rarely characterizes all of the colors in

a natural scene. This means any effective spectral anomaly detector must perform some

transformation on or clustering of the data for it to fit the assumption of normality. Such

procedures will be referred to here as normalization. Once the data has been normalized,

the mean vector and covariance matrix are estimated in order to calculate the Mahalanobis

distance of each pixel.

The RX Algorithm

Perhaps the simplest normalization method is the RX algorithm [19]. The basic assumptions

of the algorithm are that each pixel is drawn from a multivariate normal distribution, but

that the mean and variance of the distribution change across the image. The variance is

generally assumed to change more slowly than the mean. So much so, that it is common to

use the same variance estimate for the entire image but to calculate this using a spatially-

varying mean [5]. The mean is usually calculated within a window near, but not including,

the very immediate neighborhood of the pixel. Once this local mean has been subtracted, it

is straightforward to calculate the covariance matrix and thereby the Mahalanobis distance

of each pixel. Apart from the Mahalanobis distance threshold, the only parameters to this

algorithm are the outer radius, R, and the inner radius, r, of the local neighborhood.

In image processing terms, these steps can be thought of as an unsharp masking

operation (Figure 2.1), resulting in a residual error image. Next, a color transformation is

applied to the error image with the inverse of its color covariance matrix. The next step,

which does not seem to have an image processing analogue, is to take the dot product of each

transformed error vector with the corresponding untransformed error vector. This results

in a gray-scale image of Mahalanobis distances, to which is applied a threshold chosen with

Equation 2.2.

8
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-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 0 0 0 -1 -1
-1 -1 0 40 0 -1 -1
-1 -1 0 0 0 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

Figure 2.1: Example of an RX convolution kernel: This unsharp mask kernel computes the
residual error for each pixel given a square neighborhood with R = 4 and r = 2.

Adaptations of the RX algorithm include exchanging the covariance matrix for the

correlation matrix [5]. It is also possible to combine local parameter estimation with clus-

tering methods [1].

Clustering Methods

A common normalization method is to divide the image pixels into clusters using methods like

vector quantization and k-means [1, 3, 21]. In none of these examples do the authors explicitly

state that their clusters are normal in shape, but all use a Mahalanobis distance threshold,

which implies an assumption of normality. The BACON algorithm [2, 21] explicitly chooses

the distance threshold using the chi-square distribution, as discussed above.

The Gaussian Mixture Model (GMM) can be considered a form of fuzzy clustering.

With a GMM, it is assumed that the true distribution can be approximated by a mixture

of normal (Gaussian) distribution components. The GMM for a set of data is usually found

using the Expectation-Maximization (EM) algorithm [6]. The EM algorithm consists of two

alternating steps. In the expectation step, the likelihood of each sample is calculated for

each mixture component, divided by the sum of likelihoods for that sample. The result of

this step is a set of membership values across all samples for each mixture component. Using

these membership values as weights, weighted means and covariances are calculated for each

mixture component. If the GMM is properly estimated, each mixture component may be

9
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considered a fuzzy cluster. Unlike the clusters produced by k-means or vector quantization,

these clusters are designed to be normally-distributed, but this is a much more costly process.

Robust Methods

Most clustering approaches, such as CBAD and GMM, simply use the sample mean and

covariance matrix of each cluster, but a more robust approach to outlier detection is the

BACON algorithm [2, 21]. BACON aggregates sample points within a cluster into an inlier

set by gradually increasing the threshold on Mahalanobis distance, re-estimating the mean

vector and covariance matrix at each step. This iterative estimation is more robust to

outliers, thus ensuring that the outliers can be correctly identified. It is more costly than

simply calculating the sample mean and covariance of the entire image, since it requires

multiple iterations with sample sizes approaching the full set.

2.2.3 Summary

While many possible approaches exist, the basic structure of a spectral anomaly detector is

generally the same: (1) Estimate the parameters for one or more normal distributions from

which the pixels can be drawn, and (2) compare pixels to this model, flagging statistical

outliers as anomalies. For a given application of spectral anomaly detection, a balance must

be found between the accuracy of the model and the speed at which it needs to be estimated.

2.3 Related Detection Methods

A field closely related to WiSAR is analysis of surveillance video. Within this domain,

solutions have been proposed for background subtraction [12, 23], human detection [14, 15,

25], and behavioral anomaly detection [11]. These methods are discussed here for comparison

and to discuss the difficulties in applying them to this domain.

10
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2.3.1 Background Subtraction

Work on background subtraction includes modeling of dynamic backgrounds and creating

backgrounds for stationary pan/tilt cameras. In a surveillance system, background subtrac-

tion generally consists of modeling the background over time on a pixel-by-pixel basis and

identifying those pixels that don’t fit their respective background models. This is sometimes

called motion detection. The sophistication of a pixel’s model varies from a simple average to

mixture models [23]. For cameras with pan and tilt motion, a panorama background can be

constructed for use in place of a single background image [12]. Since a WiSAR search camera

is in constant motion and almost never views the same place twice or for more than a few

video frames at a time, a localized model of the scene is of little help. Using a single model

for all pixels in the image would be in the realm of spectral anomaly detection (Section 2.2).

2.3.2 Object Detection

All object-detection methods require some prior model of the class of objects being detected.

In most cases, the object model is formed from a large base of offline training examples [14,

15, 22, 25]. In other cases, the model may be developed from domain knowledge [4, 8].

Because such methods are derived from specific qualities of the object in question, they are

often difficult or impossible to generalize to new applications. For example, the method in [4]

is only useful for finding large man-made objects in natural scenes because it relies on the

way texture should be distributed in large natural regions versus large man-made regions.

2.3.3 Human Detection

A specific class of object detection that has been the subject of a lot of research is human

detection. As promising as human detection sounds, it has drawbacks that make it an

unlikely candidate for use in wilderness search and rescue. Firstly, the missing person is

not the only thing searchers will be looking for. Identification of objects left behind by the
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search subject, such as a jacket or bag, can help guide the searchers in the right direction.

Detection of humans alone is therefore insufficient for wilderness search and rescue.

Perhaps more problematic of human detection is that previous work has almost ex-

clusively focused on detection of humans that are moving and/or upright relative to the

camera [14, 15, 25]. For this reason, a more accurate name for these systems could be

pedestrian detection, though they are not always identified as such. Because there is limited

variation in overall orientation and shape, detection of pedestrians such can be very effective

with offline training and template matching.

In a search scenario, the position and orientation of the search subject can vary widely

and is generally unknown. Also unknown is the background class, since background shapes

and colors vary from scene to scene. Generalizing these approaches to detect humans in all

positions and orientations and against all natural backgrounds would require a wider base

of training examples and probably produce more false positives. It would likely be very

difficult to gather sufficient training data for such a system. To construct a template, one

would need prior knowledge of how the target objects differ from the scene. These problems

make adaptation of existing human detection systems for search and rescue impractical.

2.3.4 Behavioral Anomaly Detection

Behavioral anomaly detection [11] involves the characterization of motion in surveillance

video and should not be confused with spectral anomaly detection. Such systems presuppose

the detection of humans and/or moving objects. Behavior modeling would be of little use in

wilderness search and rescue scenario after the person has been detected.

2.4 Summary

Video enhancement methods can be helpful for WiSAR and form a good foundation for this

work. Changing the focus from enhancement to detection can have be a greater benefit to

the search task.
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Many tools exist in the realm of video surveillance, but these tools are difficult to

adapt to WiSAR because certain general assumptions fail to apply. These differences include

the content of the scene as well as the position and movement of the camera. Because the

domain is sufficiently different from WiSAR, other methods must be explored.

Much more promising than adapting surveillance tools is adaptation of hyperspectral

anomaly detection. Multiple methods exist for hyperspectral anomaly detection, any of

which could be adapted to the relatively low-dimensional data of color images. A good

spectral anomaly detector is key to creating an unusual-object detector for WiSAR.
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Chapter 3

A Detector for Unusual Objects

The unusual-object detection system implemented in this work uses a multi-step

process to find man-made targets in aerial video of natural scenes. The first step is to process

each video frame with a spectral anomaly detector, producing a binary map of anomalous

pixels. In the next step, these pixels are aggregated into objects with spatial and temporal

extent using connected component labeling and alignment between frames. Finally, various

information about each unusual object is computed and used to filter out the most likely

candidate objects.

This chapter first discusses the implementation of multiple candidate spectral

anomaly detectors. Next, it discusses the collection of image data used to evaluate the

candidate detectors and the results of the evaluation. Finally, it explains the methods used

for pixel aggregation and object filtering.

3.1 Anomaly Detection Implementation

The first step in our object detection algorithm is to detect spectral anomalies. The following

four candidate methods were implemented for comparison:

1. The RX algorithm [19]

2. Vector quantization (as used in CBAD [3])

3. K-means clustering

4. The EM algorithm [6], initialized using k-means

14



www.manaraa.com

The BACON algorithm [2] for robust outlier nomination was also implemented to

see if it could improve the results of the best spectral detector. All of these methods are

described in Section 2.2.

3.2 Data Collection

In order to evaluate the different detectors, a set of test images was collected. These images

are of natural scenes containing a few foreign man-made objects. A ground-truth labeling

of the objects within each image was created for fast and repeatable testing.

3.2.1 Photography

To best control the content of the images, the scenes were set up carefully and deliberately.

Two natural scenes were used: a grassy location and a desert location. These two locations

were carefully chosen to minimize the likelihood of man-made objects in the scene. A small

number of man-made objects were then placed at each location for use as visual targets.

These targets ranged in size from a t-shirt to a small blanket. Each target consisted of one

or two solid-colored objects. Six targets were placed in the first scene and five targets were

placed in the second scene. Thus, each scene contained mostly naturally-occurring objects,

with only a few foreign man-made objects.

A professional aerial photographer captured aerial imagery of each scene using special-

ized equipment. The photographer mounted a digital camera on a small, remote-controlled

plane. The photographer then flew the camera over the scene, capturing both high-resolution

still images and standard-resolution digital video of the targets.

3.2.2 Image Labeling

The video and images of each scene were reviewed carefully by visual inspection, and with

the aid of temporally-local mosaics. In addition to the objects placed in the scene as targets,
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the camera captured a number of other objects that could reasonably be considered foreign

to the scene:

Other foreign objects at the grassy location

• The pilot and two other people

• Two vehicles

• Multiple nearby buildings (video only)

Other foreign objects at the desert location

• The pilot and vehicle (video only)

• A plastic grocery bag (photographs only)

• A white box

• A bright orange object

All known anomalies, including the accidental objects listed above, were manually

labeled in the digital stills on a per-pixel basis. This resulted in one label map image for

each high-resolution photograph. These label maps were then used to optimize and compare

the different spectral anomaly detection methods.

3.3 Spectral Detector Evaluation

An automated test suite was built for fast and repeatable evaluation of the different spectral

anomaly detection methods. The test suite calculates a Receiver Operating Characteristic

(ROC) curve for each anomaly detection method by varying the detector’s threshold and

plotting the true positive rate (TPR) against the false positive rate (FPR). The comparison

metric for the different methods is the area under the ROC curve.

At least one method (the RX algorithm) is sensitive to the size of objects in the image.

Therefore, the full-size stills as well as the corresponding label images were subsampled to get
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Figure 3.1: Target and Measured FPR for each method

object sizes similar to those seen in the video but not so small as to hinder visual detection.

Decimating the still images by a factor of two gives targets of about the right size. Even

after decimation, the still images are much bigger than the frames of video. Dividing each

decimated image into six regions gives images reasonably close in dimensions (544 × 612 and

512 × 576) to that of the video (640 × 480). Thus, each of the 278 still images produced

24 video-frame-sized subimages, for the total equivalent of about 3.7 minutes of manually-

labeled high-quality video.

The anomaly map returned by a given configuration was compared pixel-by-pixel to

the label images created during data collection to calculate the TPR and FPR. The TPR

is the percentage of labeled pixels correctly identified as anomalous, while the FPR is the

percentage of non-labeled pixels incorrectly identified as anomalous.

In order to cover as near as possible the full range of false positive values, a target

false positive rate was varied from 0% to 100%. This target value was used, in connection

with Equation 2.2, to determine the Mahalanobis distance threshold for each test. Each

ROC curve is comprised of 40 such tests. The measured FPR matched closely with the

target FPR for all four spectral detection methods (Figure 3.1).
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Figure 3.2: ROC curves for each method

3.3.1 Evaluation Results

The spectral detector that performed the best overall was the RX algorithm with R = 53

and r = 13 (Figure 3.2). While there were significantly worse settings for RX (Figure 3.3),

comparable results could be found in a fairly broad range of the parameter space (Table 3.1).

The second best detector was the degenerate clustering case of k = 1. This case

is the same for all clustering methods as it performs no clustering or normalization of the

data. Comparable results were found for each clustering method with k = 2 (Figure 3.2),

but larger values of k showed a decrease in performance (see Tables 3.2, 3.3, and 3.4; and

Figures 3.4, 3.5, and 3.6). The reason for this is not entirely clear. To explore this apparent

failure of clustering methods, and to rule out the possibility of implementation error, a few

detectors were compared in more detail.

Further Analysis of Clustering

In order to dissect the failing points of clustering, RX and the degenerate case were com-

pared to vector quantization and k-means on each of a smaller set of only 742 subimages.

These were the only subimages that contained man-made objects, and could thus be used
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Figure 3.3: Results for RX with various parameters

R r ROC curve area
2 1 66.355%
3 1 72.289%
15 1 93.919%
34 33 95.242%
50 11 96.921%
52 27 96.899%
53 13 96.933%
53 15 96.929%
55 15 96.926%
62 21 96.910%
66 17 96.916%
66 33 96.854%
82 1 96.889%
130 65 96.700%
162 161 88.433%
194 129 96.473%

Table 3.1: Results for RX with various parameters
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k ROC curve area
6 95.564%
5 95.789%
4 96.048%
3 96.21%
2 96.395%
1 96.464%

Table 3.2: Results for vector quantization with different values of k
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Figure 3.5: Results for K-means with different values of k
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k ROC curve area
6 90.902%
5 92.491%
4 94.544%
3 95.712%
2 96.377%
1 96.464%

Table 3.3: Results for K-means with different values of k
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Figure 3.6: Results for EM with various parameters
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k iterations ROC curve area
6 16 0.002%
5 16 0.037%
4 16 92.971%
3 16 94.128%
2 16 95.309%
6 4 90.612%
5 4 92.743%
4 4 94.602%
3 4 95.370%
2 4 96.406%
6 2 90.913%
5 2 93.000%
4 2 94.929%
3 2 95.643%
2 2 96.438%
6 1 91.219%
5 1 93.161%
4 1 95.103%
3 1 95.770%
2 1 96.447%

Table 3.4: Results for EM with various parameters
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to compute ROC curves. For any given value of k between 2 and 6, vector quantization out-

performed the degenerate case on over 46% of the images. With k = 4, vector quantization

outperformed the degenerate case 50.4% of the time. For k-means, the best value of k was

3, outperforming the degenerate case on 52.3% of the images. Clearly, clustering with k ≥ 2

can be beneficial, but only about half of the time.

In a more specific example, the comparison was performed on a set of 64 subimages

of the same target: a white t-shirt at the grassy location. K-means with k = 3 outperforms

the degenerate case on 42 of these images, or 65.6% of the time. Even more impressively, it

outperforms RX 87.5% of the time. Therefore, RX is not always the best choice either.

These results show that clustering can work very well in many cases. They also

indicate that the fault is not in the implementation of the clustering algorithms. But if

clustering with moderate values of k can outperform k = 1 on over half of the images, why

does k = 1 do better overall? It may be that higher values of k are more likely to overfit. Or

it may be that higher values of k are simply less likely to be the right choice. Either way, it

is clear that any fixed value of k will perform well on some images, but this benefit will not

compensate for failure on the rest of the images.

The real problem with using clustering in this domain is that it is more sensitive to

the content of the scene than the size of the target [3]. The content of the scene can change

frequently as the plane flies over different areas. If only one type of ground cover is present,

k should be very low. For more types of ground cover, the cluster count will need to be

higher to correctly model the background. The correct number of clusters to use will then

change as the more or less types of ground cover are in view. In contrast to this, parameter

selection for RX is mostly dependent on target size [3].

The EM Algorithm

Apart from the problems of choosing the right value of k, the EM algorithm has further

complications. In all tests of EM, increasing the number of iterations decreased performance
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Figure 3.7: Results for EM with too many iterations

(Table 3.4). The reason for this is most likely that with enough clusters and iterations,

EM begins to model the outliers as well as the background. For the two highest values of k

tested, using 16 iterations resulted in almost no true positives, regardless of the false positive

rate (Figure 3.7). With k = 6, the false positive rate did not even approach 100%, even with

the highest target FPR. From this it is clear that great care should be taken in choosing the

parameters for EM to prevent over-fitting the data.

3.3.2 BACON

The best performing normalization method, RX, was combined with a robust outlier detec-

tion method, BACON, to try to improve performance. The ROC curves with and without

BACON are very similar (Figure 3.8). The ROC curve area with BACON (97.17%) was

slightly higher than with RX alone (96.93%). But this increase is less significant than the

one between no normalization (96.46%) and RX.

One downside of using BACON is that it is more difficult to control the false positive

rate, and therefore the true positive rate. Although the relationship between measured TPR

and measured FPR is comparable to RX alone (Figure 3.8), the measured FPR is often much
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higher than the target FPR when BACON is used (Figure 3.9). This is most likely due to

BACON’s robust nature.

Both methods shown in Figure 3.9 use the target FPR to determine a Mahalanobis

distance threshold, but they use them differently. Where the simple method uses this thresh-

old to exclude outlying points, BACON uses this threshold to iteratively include more points

in the set of inliers. Once no additional points fall within the threshold, BACON terminates.

This termination can happen at any iteration, regardless of the number of outliers. This

means that the number of outliers is not only less predictable, but it has the potential to be

much larger than using the simple method.

Another major downside is that BACON’s iterative nature is inherently more compu-

tationally expensive. Instead of computing the covariance matrix and Mahalanobis distances

once, they must be recomputed for each iteration.

Although using BACON produced a slightly better ROC curve, in terms of area, it

was also much slower and harder to control than RX alone. Therefore, BACON was not

used for detection in this work.
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Figure 3.9: Target and measured FPR for BACON

3.3.3 Summary of Results

Clearly, clustering can work well on many images and produce decent results in general, but

RX generalizes better in this domain. The reason for this is the difference in parameters.

The best value for the clustering parameter k is determined by the content of the scene,

specifically, how many color classes are normal to the scene [21]. It does not seem reasonable

for one value of k to work best for many different scenes.

In contrast, the best window size for RX is primarily determined by the sizes of the

targets and other objects [3]. In an aerial search, the ground resolution would be controlled

to keep targets large enough for detection, while maximizing ground coverage [9]. Thus, the

target size should easily fall within a predictable range. Since target size is less variable and

easier to predict in this domain than scene content, RX should be preferable to a clustering

approach.

3.4 Object-based Detection

All of the spectral anomaly detection methods considered in this work perform pixel-wise

detection. This means that the best result each of these can give is a binary mask corre-
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sponding to the image that shows which pixels are anomalous. A binary anomaly mask is

sufficient for video enhancement techniques [17, 18], since an overlay image or filter is all

that is required. With a little more work, this information can be summarized for a more

clean and consistent user interface.

3.4.1 Problems with Pixel-based Detection

One problem specific to this domain is that one can only expect to detect targets that are

significantly larger than a single pixel. The first reason for this is that the objects must

be large enough to appear significant to the human reviewer. Even if the detector found a

target of single-pixel or sub-pixel extent, it would most likely be dismissed by the human

analyst.

Secondly, detection of such small targets using only RGB values is very difficult. Color

images contain much less information per pixel than do hyperspectral images. Not only is

the number of spectral bands very low, but the color bands significantly overlap each other.

This means that separation of the target from the background on a pixel-by-pixel basis is

much more difficult for color images. Separation is even more difficult for samples that are a

mixture of target and background, such as pixels on the border of a target or targets smaller

than a single pixel. Spectral mixing also occurs through digital-to-analog conversion (NTSC)

or block compression (JPEG, ATSC) which may be required for transmission or storage of

image data prior to processing.

Fortunately, targets are expected to be significantly larger than a single pixel [9] in this

domain. As noted above, the target must span a fair-sized region of pixels to be detectable

by the reviewer as well as an automated detector. Because of the redundancy inherent in

video, objects are also expected to appear in multiple consecutive frames. Leveraging this

information, the anomalous pixels are aggregated into spatiotemporal objects.
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3.4.2 Aggregation

Anomalous pixels are aggregated spatially by finding connected components in the anomaly

map. If the false-positive rate is high, morphological dilation and erosion can first be applied

to the anomaly map to filter out speckles. Each connected component in the anomaly map

is a unique spatial object.

Spatial objects are aggregated temporally using the frame-to-frame alignment that

was computed for the temporally-local mosaic. Each object is warped from frame to frame

until it either overlaps with another spatial object or falls entirely outside of view. Since an

object can be warped multiple times before overlapping or falling out of view, overlapping

objects need not occur in adjacent frames. Spatial objects that overlap are then combined

into spatiotemporal objects.

3.4.3 Object Filtering

Information about each spatiotemporal object is gathered to filter out the best candidates.

Objects that are too small are likely to be the result of noise, so objects that are not suffi-

ciently large are discarded. The temporal extent of each object is also taken into consider-

ation. Objects that appear too briefly or infrequently are also discarded. Good candidate

objects should be detectable soon after they appear and/or shortly before moving out of

view. Therefore, objects that do not occur near enough to the edge of the view are likewise

discarded. Other information can be calculated as well, such as average color or ground

location. Each object that meets the filter criteria is saved in a final list of unusual objects.

In this work, the filter criteria were chosen empirically.

3.5 Summary

Unusual-object detection starts with spectral anomaly detection. Of the methods explored

here, the RX algorithm adapts best to this domain. While statistically-robust methods like

BACON may be useful in some cases, it was not worth the added computational cost in this
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application. Using the redundancy of video, spectral anomalies can then be aggregated into

spatiotemporal objects and information gathered about them. The result of this process is

an information-rich list of objects. One application of the unusual object list is explored in

Chapter 4.
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Chapter 4

User Study

The best way to evaluate the unusual-object detector is to consider its impact on the

search task. While a ground-truth evaluation could be performed, this would not show the

benefit of the detector to those performing a search. Therefore, a user study was performed

where participants performed visual search in a simulated WiSAR scenario with and without

the aid of the detector.

There are numerous ways that the imagery and detector results could be presented

to a searcher, and the choice of presentation will certainly have an effect on the searcher’s

performance. In order to keep the implementation and analysis tractable, one simple user

interface was implemented and evaluated for this study. This chapter describes the user

interface, the data used, and a statistical analysis of the collected user data.

4.1 User Interface

Each participant was asked to view a series of eight aerial video clips and mark foreign or

man-made objects. Participants placed marks on the video with a single mouse-click and

could remove marks with a right-click. These marks appeared as red circles (Figure D.3).

Participants were given the option of pausing the video to examine or mark objects. Each

time a participant marked an object in the video, the location and time were recorded.

Unless a mark was removed by the participant, it was also logged in a final list of markings

for that participant.
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All aerial videos were presented as temporally-local mosaics [9] (Figure D.1). The

presentation order was counterbalanced and the order of the videos was randomized. For

each participant, four of the eight video clips were randomly selected and marked with

suggestions from the detector (see Section 4.2.2 on page 34).

In addition to the primary task of target detection, participants were also given a sec-

ondary task in which they counted tones played during each video clip. Some clips contained

a series of only low-pitched tones, while other clips contained tones of two different pitches.

This secondary task was included in order to evaluate the cognitive load on participants.

After each exercise, the participant was asked to report the number of low tones and (if

present) the number of high tones played during the exercise.

These options resulted in four presentation methods: suggestions with only low tones,

suggestions with both high and low tones, no suggestions with only low tones, and no sug-

gestions with both high and low tones.

Each participant first took a brief demographic survey (Appendix A) and read a set of

written instructions (Appendix B). Each participant then viewed a number of explanatory

example images (Appendix D) followed by two practice video clips before beginning the

exercises. In both practice clips, the participant viewed the same video sequence but with

different presentation methods. The presentation method for the first practice clip was

generated randomly, with the second being the complement of the first.

4.2 Data Used

Aerial video was taken at both a grassy and a desert location, with many of the same target

objects being used at both locations (see Section 3.2). For each location, four one-minute

video clips were selected for the user study. The number of targets visible in each clip

ranges from zero to seven (Table 4.1). The complete set of eight video clips included two

appearances each of 12 target objects (Figures 4.1 and 4.2) for a total of 24 targets.
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(a) Tan shirt w/ shorts (b) Blue blanket (c) Red shirt

(d) Black shirt (e) Green bag

Figure 4.1: Target objects at the grassy location

(a) Blue blanket (b) Black shirt (c) White shirt

(d) Red shirt w/ shorts (e) Green bag

(f) Orange object (g) White box

Figure 4.2: Target objects at the desert location
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Clip Number 1 2 3 4 5 6 7 8
Targets 1 4 0 5 2 0 7 5
Suggestions 53 24 37 24 7 4 8 15
Scene A A A A B B B B

Table 4.1: Information about the content of each video clip (A is grass, B is desert)

4.2.1 Targets

Each of the 12 target objects consists of one or two man-made objects. Each man-made

object is on the order of a person in size and consists of a single color: red, blue, green,

orange, tan, black, or white. Some of these physical objects were used for multiple target

objects. For example, the same blue blanket was laid out on the ground in the grassy location

(Figure 4.1b) and draped over sage brush at the desert location (Figure 4.2a). The same

red shirt is laid out by itself in the grass (Figure 4.1c) but paired with the tan shorts in the

desert (Figure 4.1c).

In addition to the intentionally-placed targets, several other man-made objects were

also discovered at each location. For better control over user-study results, the video clips

were carefully chosen to exclude most of these objects. Two unintentional objects were

included as targets because they were difficult to exclude, were of the right size, and consisted

of solid colors. These were a white box and an unidentified orange object (Figures 4.2g

and 4.2f). Because of its proximity to the UAV pilot, a white t-shirt that was intentionally

placed at the grassy location had to be excluded from the user study video clips.

Because each target object appears twice and several physical components are reused

between targets, a training effect is possible where participants are more likely to detect an

object they have already seen. In a pilot version of the study, some participants were asked if

they noticed any repeated objects and all of them answered in the negative, suggesting that

different appearances of the same object were sufficiently unique. Also, the pseudo-random

ordering of the exercises (see Section 4.2.3) should prevent a strong bias from any training

effects.
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Figure 4.3: Suggestions as blue circles

4.2.2 Suggestions

The purpose of the user study was to evaluate the usefulness of suggestions from the detector

described in Chapter 3. Four out of every eight video clips included target suggestions. The

other four clips served as a control group with no suggestions. Suggestions were presented

as light blue circles (Figure 4.3) with one circle for each anomaly found by the detector.

The size and location of each circle was made to encompass a region twice the size of the

anomaly’s bounding box.

For the pixel-wise detection step, an RX detector was used. The inner radius for

the RX convolution kernel should be large enough to exclude most of the target object,

while the outer radius needs to be just large enough to accurately sample the surrounding

region. While the optimal settings discovered in ground-truth evaluation were 13 and 53,

respectively, the inner radius was increased here to 26 to produce better results with some of

the larger targets. The false-positive rate was set to 1 in 10 million pixels by trial and error.

The number of unusual objects found was somewhat different between the two lo-

cations. The video of the grassy location originally produced many more single-pixel tar-

gets than the desert location, significantly slowing down object aggregation. The optional

morphological operator was therefore applied to remove these objects earlier. A possible

downside of this operator could be a decrease in detection rate, since it could also remove

or decrease the size of correctly-detected objects. This does mean that a slightly different

process was applied to the two scenes, but this was a direct result of the difference in content.
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In practice, the technician could switch this operator on or off, to find which one produces

a more reasonable number of false positives.

The best parameters for the object filtering step were each determined empirically

using the ground-truth and the object lists from the aggregation step. Objects were ignored

if they appeared for less than 3 frames or in less than 91% of their known temporal extent.

Objects of interest were also restricted to those that had contained at least 43 anomalous

pixels in at least one frame and touched the border of their first or last frame. Of the 24

target objects, 11 overlapped with suggestions for a 45.8% true-positive rate. The filter

settings were chosen by varying each parameter, observing the resulting object list in the

user study interface, and subjectively choosing a good trade-off point between the number

of true positives and the number of false positives. Less restrictive settings produced more

true positives but also a good deal more false positives.

4.2.3 Sequence Generation

Each participant was assigned a unique sequence of eight exercises. With eight video clips

and four presentation methods, there were 32 unique exercises to choose from. In order

to prevent bias in the results, unique semi-random exercise sequences were generated for

all participants beforehand. The sequences were generated with a greedy algorithm that

guaranteed that each participant would view each of the eight video clips once and each of

the four presentation methods twice. If this constraint resulted in multiple choices, exercises

were then chosen to ensure equal frequency among the 32 exercises across all participants.

Other constraints on the selection algorithm included preventing any presentation method,

exercise, or 2-clip subsequence from occurring more frequently than the others. Whenever

multiple exercises met all criteria, one was selected randomly.

After reviewing data from the first 30 participants, it was discovered that, through a

setup error, the last seven participants received identical sequences. To prevent bias, the last

six data logs were ignored. The analysis did not show sufficient statistical significance with
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only 24 participants, so 12 more sequences were generated. Another discovery was that for

some participants, the targets were not evenly distributed among the presentation methods.

In an extreme case, a participant viewed zero true targets in one of the four methods. To

prevent these extreme cases, an additional constraint was added to the sequence generation

algorithm to try to evenly distribute targets among the four presentation methods for each

participant. This additional constraint was only applied to the last 12 sequences.

4.3 Results and Statistical Analysis

The final set of results consisted of data logs from 35 users. One of the scheduled participants

did not come, the six participant logs with identical sequences were ignored, and one exercise

was accidentally skipped by a participant. Seven clips were shown 35 times, with one clip

only shown 34 times. Three presentation methods were shown 70 times, with one shown 69

times. Nine of the exercises were shown 8 times, with 23 shown 9 times.

Ground truth markings were created by hand using the user study interface. One

ground truth marking was made for each of the 24 target objects. Once all of the participant

data had been gathered, all user markings, suggestions, and ground truth markings were

grouped into clusters. Each marking was put in the same cluster as any other markings

whose centers lay within its radius, resulting in a total of 535 clusters. Each of the 24

ground truth markings belongs to a unique cluster. Of these ground truth clusters, 11

include one or more suggestions and 21 include one or more participant markings. Out of

all 535 clusters, only 132 included one or more suggestion markings. Markings removed by

the participant were included in the clustering step but ignored in all other considerations.

Four performance measures were calculated for each participant for each of the four

presentation methods. The first three performance measures related to the primary task of

detection. These are the true positive rate (TPR), the false positive rate (FPR), and the

positive predictive value (PPV). The true positive rate is the percentage of ground truth

clusters that a participant clicked on. The false positive rate is the percentage of non-ground
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truth clusters that a participant clicked on. The positive predictive value is the percentage

of a participant’s clusters that included ground truth objects, equivalently known as the

precision. The fourth performance measure related to the secondary task and was the mean

squared error (MSE) of the tone count reported by the participant. The following sections

compare the four presentation methods using all four performance measures.

4.3.1 True Positives

Perhaps the most significant measure of performance for participants was the true positive

rate. The presence of high tones did not produce a significant effect on the TPR, but the

presence of suggestions did. Without the suggestions, the average true positive rate was

estimated at 52.57%. With suggestions, the TPR increased to 61.14%. This means that a

reviewer aided by the suggestions finds 6 targets for every 5 found by an unaided reviewer.

This improvement is statistically significant (p = 0.0229).

4.3.2 Tone Counting Error

The participant’s cognitive load is indicated by the log of the mean squared error in reported

tone counts. No significant difference in log MSE was found between exercises with low tones

and those with both high and low tones. However, the log MSE increases from 0.6173 to

1.1788 when suggestions are added. This difference was statistically significant (p = 0.0072).

The interaction between the presence of suggestions and high tones also appeared to be

statistically significant (p = 0.0202), but further analysis indicated otherwise, as shown

below.

Correction for Input Errors

In reviewing the tone count data, two types of input errors became apparent. The first type

of error was what one participant referred to as “fat-finger” errors: pressing two adjacent

number keys when only one was intended. The second type of error was when a participant
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skipped a tone-count question. This would cause the reported value to be logged as zero.

These behaviors were reported by only one participant each, but the data suggests that they

both occurred multiple times. Out of all the cases where a zero was reported, the lowest

corresponding true value was seven. Since it does not seem reasonable for a user to have not

noticed any of seven or more tones, all such entries were considered input errors.

The log MSE was recalculated ignoring all zero entries and two-digit entries where

one of the two digits was closer to the correct value. After rerunning the analysis without

the input errors, the interaction between suggestions and high tones no longer appeared to

have a statistically significant effect on the log MSE (p = 0.2698). Without input errors,

the estimated log MSE values were 0.5269 and 0.8843 without and with suggestions, respec-

tively. While this is a slightly smaller difference than was estimated before, the result is still

statistically significant (p = 0.0047). Therefore, the only statistically significant effect on

the secondary was that the cognitive load was higher when suggestions were present.

4.3.3 False Positives and Positive Predictive Value

An analysis was run on the log of the FPR and on the PPV, but no difference was found

between the presentation methods for either of these measures. Of the four presentation

methods, the lowest estimated FPR was 2.44% for suggestions and only low tones. The

highest was an FPR of 2.88% for no suggestions with both high and low tones. Estimates

for PPV ranged from 49.88% for suggestions and only low tones to 50.84% for no suggestions

with both high and low tones. None of the differences in FPR or PPV were statistically or

even practically significant. These results indicate that the suggestions did not cause a

significant increase in false detection.

4.3.4 Distraction Effects on True Positives

If the detector is functioning as designed, it should detect many of the same sorts of objects

that stand out to a human viewer. Even with this overlap, the suggestions can still make
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visual detection easier, and the results in Section 4.3.1 support this interpretation. However,

non-target objects marked by the detector could distract the searcher, potentially decreasing

the detection rate for targets that the detector missed.

As discussed in Section 4.3.2, suggestions reduced accuracy on the secondary task, but

the analysis showed a positive correlation between suggestions and the TPR. On this subject,

it is interesting to note that 60% of participants reported in the follow-up questionnaire

(Appendix C) that the presence of suggestions made the primary task “easier” or “much

easier”. Since suggestions simultaneously make the primary task easier and the secondary

task harder, this may indicate a shift in focus rather than an increase in difficulty. A better

analysis can be obtained by recalculating the TPR, distinguishing between which true targets

were and were not marked as suggestions.

To examine this, the mean TPR was calculated across participants using only the 13

targets that the detector missed. Without any suggestions, participants averaged a TPR of

37.2% on those 13 targets. With suggestions present (but not on the targets in question)

the average TPR was 38.0%, which suggests identical performance.

The average participant TPR for the 11 suggested targets was 68.1% without the

suggestion markings. This indicates that the detector is finding objects that stand out on

their own. With the suggestions, the TPR rose to 87.9% for the same 11 targets, showing

a much more drastic increase than was found when all 24 targets were considered (see

Section 4.3.1). This helps support the earlier conclusion that suggestions do, in fact, aid

detection.

Unfortunately, no attempt was made to calculate statistical significance for these

estimates, but the results are still notable. While the targets found by the detector were

already fairly easy to detect visually, marking them in the video still increased the detection

rate. Furthermore, there is no evidence that the false markings distracted participants from

the unmarked targets.
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4.4 Summary

This user study shows the effect on the search task of a fairly simple application of automated

detection results. Using the unusual-object detector, markings were added to aerial video

as suggestions to aid participants in finding objects relevant to a simulated search. Several

randomized trials were performed by participants and the results recorded. Performance on

the first task was primarily measured by true- and false-positive rates, while cognitive load

was measured by error on a secondary task.

As presented, the suggestions produced by the detector had a significant positive effect

on the ability of video analysts to find objects of interest. The presence of suggestions did

not increase the participants’ false positives or false negatives, indicating that they were able

to quickly and effectively distinguish between good and bad suggestions, without hindering

detection of unmarked targets. The only notable negative effect is a higher cognitive load

on the video analyst, resulting in lower performance on secondary tasks. This effect should

be taken into consideration when determining an analyst’s workload.
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Chapter 5

Conclusion

Wilderness search and rescue is an important topic to many people, not least being

those that get lost in wilderness areas each year. Improvement to WiSAR technology has

the potential to save lives.

Advances in technology like the UAV-based platform being developed by the BYU

WiSAR research team can help WiSAR teams gather data about a search area. The data

captured by an aerial camera can be very beneficial for search, but not if items of interest

go unnoticed. This work improves on the existing framework by detecting unusual objects

to help searchers find relevant items.

This work seeks to improve detection of relevant objects in the video. Before an item

can be identified as relevant to the search, it must first be detected. An automated detection

system should relieve some of the burden on those performing this task.

Without a perfect detection system, the search team will almost certainly want all

image data reviewed by a trained technician. Even for trained technicians, however, object

detection is a difficult task. Rather than work in competition with the searchers, the purpose

of the detector implemented here is to make video review easier for the searchers.

5.1 The Solution

The most crucial part of the unusual-object detection system is the spectral anomaly de-

tector. A key difference between objects of interest and their surroundings is often their

color. By finding which pixels differ from their surroundings, we find those most likely to
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belong to objects of interest. This is accomplished using spectral anomaly detection methods

developed for hyperspectral imagery.

Using carefully collected and labeled image data, four spectral anomaly detec-

tion methods were evaluated: RX, K-means, Vector Quantization, and Expectation-

Maximization. All of these methods did well at distinguishing which pixels did and did

not belong to naturally-occurring objects. The best performing method, as measured by

area under the ROC curve, was then used in the unusual-object detector.

Of the spectral anomaly detection methods explored here, the RX algorithm is clearly

the most promising. The RX algorithm performed better than all three clustering methods.

While clustering may be more theoretically sound, it requires the selection of the optimal

number of clusters. While this can be devised by visual inspection for a single image, choosing

one cluster count for a diverse set of images consistently performed worse than no clustering

at all. In contrast, the parameters to the RX algorithm are based on the size of the targets,

which is fairly easy to predict in this domain. Adding robust outlier detection to the RX

algorithm did not improve the results sufficient to consider adding this costly procedure to

the detector. Therefore, a simple RX detector was applied in the remainder of this work.

Once the anomalous pixels are identified, they are aggregated into spatial objects

using connected-component labeling. These spatial objects are linked together into spa-

tiotemporal objects, using frame-to-frame alignment of the video to compute overlap. The

list of unusual objects is then summarized and used to enhance the searcher’s video review

interface.

5.2 User Study Results

In the user study, the object list was used to overlay the video display with markings to draw

the searcher’s attention. The results show a significant improvement in the detection rate.

The data suggests, but does not positively confirm, that this increase was chiefly among those

targets that the detector found, with no decrease in detection among the other true targets.
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The presence of the suggestion markings also increased cognitive load on the searchers, as

shown by a decrease in accuracy on the secondary task, but most participants reported that

these markings made the primary task of search easier. No significant effect was found on

the false positive rate.

5.3 Limitations and Future Work

In the user study performed here, the detector results were combined with a specific user

interface, but no effort was made to separate the effects of these two factors. It is therefore

possible that the improvement in performance is primarily due to the interface, rather than

the detector. It is also quite possible that an interface or detector not evaluated here could

produce a greater improvement.

5.3.1 Detector vs. Interface

False detection did not increase and it does not appear that the markings distracted the users

sufficiently to decrease detection among unmarked targets. It then appears that the incorrect

markings in the video had no effect except perhaps increasing cognitive load. It should then

follow that the increase in performance is due primarily to the correct markings. If this is

truly the case, which seems entirely reasonable, then the improvement in user performance

should directly correlate with the detector’s true positive rate.

It should be noted, however, that the false positive rate should still be kept relatively

low. No predictions can be made from the data about the effect of a change in the detector’s

false positive rate, but one would expect a decrease in FPR only to have no ill effects, while

a sufficiently high FPR would eventually become a burden on the searcher.

It does not then appear that the interface itself is the primary cause of the improve-

ment in user performance. If a detector were found with a higher TPR for the same FPR, it

should improve performance, while using a lower TPR setting for this detector would likely

be less helpful to searchers.
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5.3.2 Other Detectors

In this study, the RX algorithm was found to outperform all clustering methods, but many

other possibilities exist for anomaly detection.

It may be worthwhile to compare RX to unsupervised clustering methods that at-

tempt to find the optimal number of clusters. To save on computation, it would probably be

best to perform this step infrequently—perhaps when a significant change in scene content

is detected or when the number of anomalies gets unreasonably high or low.

Another possibility not explored here would be to use the binary mask used for color

enhancement [18]. Unlike the spectral anomaly methods produced here, this method uses

a histogram-based approach to find unusual colors. By varying the histogram threshold,

it should be possible to compute an ROC curve for this method to compare against other

anomaly detectors.

It should be noted that the object aggregation step used here is rather ad hoc, al-

though the results do not appear to be too dependent on the parameter settings. More

sophisticated methods of summarizing anomaly detection results could be explored and com-

pared.

5.3.3 Other Interfaces

More sophisticated or even more simple methods could be devised to utilize the results of

the unusual-object detector.

One possibility would be to prioritize the video by the number of unusual objects

detected or by how much they are expected to stand out. For example, unusual objects that

have a short temporal extent may be given higher priority over long ones, since they are less

likely to be detected without assistance. These priority levels could be used to change the

order or speed of the video. By giving unusual objects more screen time or reviewing them

first, the searcher could focus the video review on the best candidate objects.
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Other possibilities include switching the display focus to the actual list of unusual

objects. The object list could act as an index to the video, with information like color and

location listed next to each item. The searcher could then access the video out of order,

giving first attention to those objects found by the detector. For this method to work,

the detector’s false detection rate would need to be sufficiently low or the list would get

inordinately long. It would also require some way to review the remainder of the video to

find objects that the detector missed.

5.4 Summary

The unusual-object detector presented here would be an excellent tool for wilderness search

and rescue using aerial video cameras. The preliminary analysis shows that anomaly de-

tection performs well at detecting portions of man-made objects in color photos of natural

scenes. More importantly, the user shows that suggestions produced by the detector im-

prove detection rates by users performing visual search. By assisting searchers in finding

unusual objects in the video, they will be less likely to miss signs of missing persons, thereby

increasing the likelihood of a successful search.
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Appendix A

Pre-study Questionnaire

«User_ID» 

Pre-study Questionnaire 
Please check only one choice per question.  Your answers to these questions do not affect your 
eligibility for the study. 

1. Please mark your age group 
 Under 18 
 18-23 
 24-30 
 31-40 
 41-50 
 Over 50 

2. Please mark your gender 
 Male 
 Female 

3. Do you have any physical limitations that may possibly affect your performance in this 
user study (i.e. color-blindness, vision impairment, hearing impairment, impaired motor 
skills, etc.)? 

 No 
 Yes (explain) _________________________________________________________ 

4. How experienced do you feel that you are with using computers?  
 Expert 
 Average 
 Novice 

5. How experienced do you feel that you are with wilderness search and rescue tasks?  
 Expert 
 Average 
 Novice 

6. How experienced do you feel that you are with tasks involving searching for things on 
the ground from high up above in the air (aerial searching tasks)?  

 Expert 
 Average 
 Novice 

7. How familiar are you with the research related to this study?  
 I have never heard of this research prior to this user study. 
 I have heard about the research, but I have never seen the display methods. 
 I know about the research, and I have seen the display methods before. 

8. How familiar are you with others’ preferences of the display methods that you will be 
presented with in this study?  

 I know many peoples’ preferences. 
 I know a couple other peoples’ preferences. 
 I know somebody else’s preferences.  
 I know nobody else’s preferences. 
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Appendix B

User Study Instructions
User Study Instructions 

The Scenario (fictional) 
A person has gone missing in the wilderness.  We are flying a plane over the search area to look for traces 
of the person and the plane is transmitting video to you at a ground station.  In addition to the video, the 
plane is communicating information about its status via a series of high- and low-pitched beeps, or tones. 

What You Will See 
The interface consists of an enhanced display of the video and sounds played through the speakers or 
headphones.  You will start your session with a few example images and sounds as well as two (2) short 
practice video clips.  The purpose of the practice clips is for you to get comfortable with the tasks before 
evaluating the system.  Please spend as much time practicing as you feel comfortable. 

Once you’re done practicing, you will be presented with eight (8) enhanced video clips of about one 
minute each.  During each clip we will need you to perform two tasks related to the information we are 
receiving from the plane. 

To assist you in your tasks, our system will enhance the video display by one or more methods.  First, the 
system will stitch the video together into a larger image.  Second, the system may suggest objects that it 
thinks might be traces of the missing person. These suggestions will be marked by light blue circles and 
will not appear in every video clip.  We will tell you before each clip whether or not it contains 
suggestions.  When you click on the video display, a red circle will appear.  In the section below, we 
explain when you should do this. 

What You Will Do 
Your primary task is to watch the video for man-made objects foreign to the scene.  Such unusual objects 
are indications that a person has been in the area.  These objects will be of various colors and could range 
in size from a shirt to a tent.  Whenever you see a man-made or foreign object, you should select it by 
clicking on it with the mouse.  It will thereafter be marked with a red circle.  You should disregard all 
naturally-occurring objects, such as vegetation and rocks, as well as larger man-made elements, such as 
trails, fences, or permanent structures. 

Remember that the light-blue circles provided by the system are merely suggestions for you to consider in 
your search task.  If a natural object has been marked as a suggestion, you should not mark it.  You need 
only select those objects that appear foreign to the scene, whether or not they have been marked as 
suggestions.  Even if some objects are suggested, this does not mean that all of the foreign objects will 
necessarily be marked with light-blue circles.  You must still look for objects in the entire scene. 

You may find it useful to pause the video when inspecting and marking objects.  You can pause and un-
pause the video by pressing the spacebar.  Remember that this is a time-sensitive search.  Each exercise 
will be precisely one minute long and pausing the video will not extend the allotted time.  When you un-
pause the video, the display will very quickly catch-up with the plane's video broadcast.  After one minute 
the exercise will conclude, even if the video is still paused, and you will not be able to view the portion of 
the video you missed.  Because of these time-sensitive effects, pausing for long periods may cause you to 
miss objects of interest or become disoriented.  We therefore recommend that you only pause the video 
when necessary, and that you un-pause the video as soon as you reasonably can.  

While you are viewing the video, we also need you to perform a secondary task.  This task will be to 
count the tones transmitted from the plane.  During some exercises, only low tones will be played.  
During other exercises, both high and low tones will be played, and you will need to count these 
separately.  We will let you know before each exercise whether it will contain both high and low, or only 
low tones.  The tones are not connected to the video or the suggestions, so be sure to maintain focus on 
your primary task of searching while performing the secondary task. 
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Appendix C

User Study Follow-up Questions

0 

User Study follow-up questions 
Please check one choice per question. 
 
 
How demanding was the primary task? 

  Very Low   Low   Moderate   High   Very High 
 
 
For the following elements of the system, how do you feel they contributed to the easiness/difficulty of 
the primary task? 
 
The secondary task (counting the tones) made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
The pace or speed of the video made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
Image stitching made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
Suggestions (light-blue circles) made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
The viewing angle of the camera made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
The motion of the camera made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
The content of the scene made the primary task: 

  Much Easier   Easier   No Effect   Harder   Much Harder 
 
 
Any comments on your answers above? 
 
 
 
 
 
 
 
 
Any comments on the system in general? 
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Appendix D

User Study On-screen Instructions

Figure D.1: Instruction slide 1

Figure D.2: Instruction slide 2
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Figure D.3: Instruction slide 3

Figure D.4: Instruction slide 4

Figure D.5: Instruction slide 5
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Figure D.6: Instruction slide 6

Figure D.7: Instruction slide 7

Figure D.8: Instruction slide 8
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